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Abstract
We consider the problem of adversarial examples
in deep learning and attempt to provide geomet-
ric insights on their universality. Specifically, we
define adversarial directions and prove relevant
results towards universality of adversarial exam-
ples with few theoretical assumptions. Our results
raise attention to fully-connected layers as the
last layer of most neural networks, which may
be prone to adversarial examples, demanding fur-
ther research in this regard. A longer version with
full proofs and discussions is provided with the
submission email and also here.

Consider the softmax regression layer at the end of many
popular neural networks for visual classification tasks
(Krizhevsky et al., 2012; Simonyan & Zisserman, 2015;
Szegedy et al., 2016; He et al., 2016) and the hidden space
of the input neurons to the softmax layer. Denote the hidden
space of the input to softmax layerH ⊆ Rl, and let h ∈ H
be this input vector, and l is the number of neurons in the fi-
nal hidden layer. We further denotem the number of classes.
We define softmax function S(z) : Rm 7→ Rm as S(z)
where z is the logits. Then the overall softmax layer could
be denoted S(WTh+ b). The neural network classifier first
maps input images x to the hidden representation h with
the complex multi-layer non-linear function g: X 7→ H,
h = g(x), and then perform softmax regression to obtain a
predicted label y = argmaxi∈[m] S(WTh+ b)i. We only
show results with the caseH = Rl here.

Definition 1. (Adversarial Direction) An adversarial di-
rection is defined on any h ∈ H as a direction d such
that ∀θ ∈ R, S(WT (h + θd) + b) = S(WTh + b), i.e.,
arbitrarily traversing along d preserves the softmax output.

Such directions are adversarial in that no output difference
could be observed with input manipulation to any degree
along them, which opens a wide range in H for potential
adversarial examples. We further assume l > m, which is
the case in almost all top-performing neural networks on
ImageNet (Krizhevsky et al., 2012; Simonyan & Zisserman,
2015; Szegedy et al., 2016; He et al., 2016) with l = 4096
(or l = 2048) and m = 1000 for the 1000 classes.
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Figure 1. Left: illustration of a decision region (purple ones) that
does not extend to ∞ when l < m. We show that in popular archi-
tectures, l > m and all decision regions extend to ∞, facilitating
adversarial examples. Right: “parallel” softmax layers where two
of the three decision regions determined by the pair of parallel hy-
perplanes are not adjacent (red and blue ones), making adversarial
examples between the two classes harder to find.

Theorem 1. ∀h ∈ H, ∃V ⊆ Rl with dim(V ) ≥ l −m, s.t.
∀d ∈ V , ∀θ ∈ R, S(h+ θd) = S(h).
Theorem 2. (Universality of Adversarial Directions) For
any region inH that’s classified as a certain class, there al-
ways exists at least one direction, infinitely far along which
the points are still classified as the same class with identical
output probabilities (contrary to Fig. 1, left).

For most g and softmax layers, we may even conjecture we
could find adversarial examples for any data pair.

Definition 2. A softmax layer is parallel if at least one pair
of its decision boundries is parallel (Fig. 1, right).

Conjecture. (Universality of Adversarial Examples) For
most multi-layer non-linear mappings g : X 7→ H and
non-“parallel” softmax layers (W, b), for any data pair
(x, y) and (x′, y′) where y 6= y′, there exists an impercep-
tible adversarial example x∗ with ‖x∗ − x‖p ≤ ε for an
imperceptible ε and g(x∗) = g(x′)+θd′, where θ ∈ R and
d′ is an adversarial direction of class y′ in spaceH.

Significance and Implications: We provide a deeper un-
derstanding of softmax regression widely used without ques-
tion in neural networks. The decision boundary of softmax
regression is piece-wise linear, and the decision region for
each class is convex, which makes softmax regression sim-
ple and expectedly robust enough. However, we show that
the decision regions are generally unconstrained, probably
leading to the universality of adversarial examples combined
with the non-linear preceding layers. Little work has been
done on the final classification layer. Serving as theoretical
evidence for some preliminary work already looking for
substitute classification layers (Pang et al., 2018), this paper
raises attention to softmax layers on adversarial robustness.

http://ml.cs.tsinghua.edu.cn/~haosheng/static/universality-adv.pdf
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