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1. Introduction
Stochastic approximation is an important field of research
in applied mathematics (Duflo, 1996; Borkar, 2008), with a
wide range of applications in the information sciences (Ben-
veniste et al., 1990; Kushner & Yin, 2003). Stochastic ap-
proximation in Riemannian manifolds was recently studied
by (Bonnabel, 2013), who proved the convergence of the
Riemannian stochastic gradient algorithm, and by (Zhang
& Sra, 2016), who studied the rate of convergence of this
algorithm, under convexity assumptions. For the problem
of computing Riemannian p-barycentres, (Arnaudon et al.,
2012) previously showed the asymptotic normality of the
Riemannian stochastic gradient algorithm. Our ongoing
research aims to provide a detailed study of the application
of stochastic approximation, to the recursive estimation of
statistical parameters which belong to Riemannian mani-
folds. The contribution presented in the current submission
extends the theory developed by (Nevilson & Hasminskii,
1973), from Euclidean space to any Riemannian manifold.
The main results are stated in Section 3, and their proofs
available online (Zhou & Said, 2018).

2. Problem statement
Let (P,Θ, X) be a statistical model, with parameter space
Θ and sample space X , where Θ is a complete Rieman-
nian manifold. Let (xn ;n = 1 , . . . ) be i.i.d. data with
distribution Pθ∗ , for some θ∗ ∈ Θ. Consider the recursive
estimates (θn ;n = 1 , . . . ), given by the decreasing-step-
size algorithm,

θn+1 = expθn(γn+1u(θn , xn+1)) (1)

where exp is the Riemannian exponential mapping, γn a de-
creasing sequence of step sizes, and u(θ, x) is a continuous
vector field on Θ, for each x ∈ X . The step sizes γn verify∑

γn = ∞
∑

γ2

n < ∞ (2)

Problem : under what conditions on algorithm (1) will the
recursive estimates θn be asymptotically efficient?
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3. Main results
The following assumptions are considered, where D(θ) =
D(θ∗|θ) denotes the Kullback-Leibler divergence :
(A1) D(θ) has an isolated stationary point at θ∗ .
(A2) D(θ) has Lipschitz gradient in a neighborhood of θ∗ .
(A3) the gradient of D(θ) verifies the identity

∇D(θ) = −Eθ∗ u(θ, x) (3)

(A4) in a neighborhood of θ∗, there is a uniform upper
bound on

R(θ) = Eθ∗‖u(θ, x)‖4 (4)

(A5) D(θ) is twice differentiable at θ = θ∗, with positive
definite Hessian.
In a system of normal coordinates θ α, with origin at θ∗,
let Σ∗ denote the covariance matrix of the components of
u(θ∗, x), and H denote the matrix of the Hessian of D(θ)
at θ∗, with λ > 0 its smallest eigenvalue.

Proposition 1 Assume (A1) to (A5) are verified, and the
recursive estimates θn all lie in a compact convex neighbor-
hood of θ∗. If γn = a

n where 2aλ > 1, then

E d 2(θn, θ
∗) = O (n−1) (5a)

d 2(θn, θ
∗) = o(n−p) for p ∈ (0, 1) (5b)

where d(·, ·) denotes Riemannian distance. Moreover, the
distribution of the re-scaled coordinates n1/2θ α converges
to a centred normal distribution with covariance matrix Σ
given by Lyapunov’s equation

AΣ + ΣA = −a2Σ∗ (5c)

where A = 1
2I − aH , with I the identity matrix.

4. Discussion of main results
Proposition 1 solves the problem of Section 2. As a corollary
of this proposition, if the Riemannian metric of Θ coincides
with the information metric of the model P , and if a = 1,
then the asymptotic covariance matrix Σ of (5c) is equal
to the inverse of the Fisher information matrix. In other
words, the recursive estimates θn asymptotically achieve the
Cramér-Rao lower bound, and are therefore asymptotically
efficient.
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