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Background. We consider the geometry of variational
autoencoders (VAEs) (Rezende et al., 2014; Kingma &
Welling, 2014). The VAE generative process of x ∈ RD is

x|z ∼ N
(
µ(z), diag

(
σ2(z)

))
, (1)

where z ∈ Rd is a latent variable, and µ : Rd → RD and
σ : Rd → RD are neural networks representing mean and
standard deviation of the generator.

This generator can be viewed as a stochastic mapping,

x = f(z) = µ(z) + σ(z)� ε, ε ∼ N (0, I), (2)

such that a stochastic manifold is spanned. Arvanitidis et al.
(2018) have shown that the expected metric of this stochastic
manifold is a Riemannian metric, such that standard differ-
ential geometry can be applied to interpret the latent space.
Here we consider the computation of geodesics under the
expected Riemannian metric.

Computing geodesics. Shortest paths under the expected
metric are known to minimize (Hauberg, 2018)

E(c) =
1

2

∫ b

a

‖ċt‖2Mct
dt, (3)

where c : [a, b] → Rd is a curve with derivative ċ and M
is the expected metric. Using that the noise ε is normally
distributed we can discretize this expression as

E ≈ 1

2

N−1∑
n=1

E
[∥∥N (µ(cn), diag(σ2(cn)))

−N (µ(cn+1), diag(σ2(cn+1)))
∥∥2]. (4)

This expression can easily be evaluated in closed-form, and
it is what we will optimize with respect to the unknown
curve c connecting two points.

Parametrizing geodesics. In an effort to build efficient
algorithms, we here propose to approximate the curve c
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with a quadratic curve per dimension,

ci(t) = ait
2 + bit+ ci, i = 1, . . . , d. (5)

By fixing the end-points of c we then have d unknown
parameters, which we find with gradient-based optimization.

Warm-starting. Following Arvanitidis et al. (2018) we
model σ2 with an RBF network (Que & Belkin, 2016)

1/σ2
(z) = g(z) = W exp(−γ‖z− z̄‖2). (6)

Here W is the trainable weight matrix while γ and z̄ are the
bandwidth and center for the basis function. Arvanitidis et al.
(2018) find that shortest paths tend to follow the “ridges” of
g(z), so we propose to first maximize the curve with respect
to g and use this to initialize the optimization of E . This
is beneficial as the RBF network is significantly faster to
evaluate than the deep neural network µ.

Two-moons illustration. We illustrate our algorithm on
the synthetic two-moons data, and find that the proposed
method works well. Figure 1 shows example results.

Figure 1. Geodesics obtained in latent space
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