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Divergences are central object of study within information
geometry (Amari, 2016). A widely studied class of di-
vergences are the f -divergences (Csiszár, 2008). The f -
divergence between two distributions p and q is defined as
(Amari & Cichocki, 2010):
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where we choose f convex with f(1) = 0. Specific ex-
amples of f -divergences have also found applications in
machine learning, particularly in variational inference (Hoff-
man et al., 2013; Ranganath et al., 2014; Kingma & Welling,
2014; Rezende et al., 2014).

The most commonly used example of an f -divergence is
the Kullback-Liebler (KL) divergence which, in the case
of variational inference, is used in deriving the evidence
bound:
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where p(x) is the likelihood we want to estimate through
the bound, p(x, z) is the joint likelihood of the data x with
the latent variable z, p(z|x) is the true posterior and q(z|x)
is the approximate posterior.

There have been several attempts at generalizing the above
framework to bounds derived from other divergence func-
tions. In particular, (Dieng et al., 2017) aims to perform
variational inference employing a variational bound derived
from the �

2-divergence between the true and approximate
posterior, while (Hernandez-Lobato et al., 2016) derives a
bound from an ↵-divergence. In addition to these devel-
opments, variational auto-encoders (VAE) have in recent
years become one of the main tools for performing simulta-
neous inference and generative aspects of Bayesian learning
(Kingma & Welling, 2014). (Li & Turner, 2016) adapts
VAE to be used with the Renyi divergence (which is closely
related to an ↵-divergence). Here we aim to generalize the
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treatment to an arbitrary f -divergence and propose a frame-
work to perform f -likelihood optimization. This provides
a unified framework for variational inference and its use in
conjuncture with auto-encoders.

To generalize the treatment of (Kingma & Welling, 2014),
(Dieng et al., 2017) and (Hernandez-Lobato et al., 2016) for
a general f -divergence we propose the following variational
bound:
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where f is convex and f(1) = 0.
Theorem 1. If p(x) is the likelihood and q(z|x) is the ap-

proximate posterior, then:
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Furthermore, the following identity holds:
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Proof. In equation (4) the inequality follows from Jensen’s
inequality. Let y =

p(z|x)
q(z|x) and g(y) = f(p(x)y), then

g(1) = f(p(x)) and the n-th order derivative is g(n)(y) =
f

(n)
(p(x)y)p(x)

n. We Taylor expand g(y) and f(y) around
1, substitute in the left hand side of (5) and readily obtain
the desired result.

Equation (4) generalizes the evidence bound used in vari-
ational inference and (5) generalizes identity (2) for an
arbitrary f -divergence. A common variant of the varia-
tional bound (3) is obtained by applying the log, as done in
(Hernandez-Lobato et al., 2016; Li & Turner, 2016; Dieng
et al., 2017). For specific choices of f -divergences there is
greater analytic tractability and lower and upper bounds can
be derived for log p(x).

By minimizing the variational bounds in equation (3) we
can perform both likelihood maximization and variational
inference. This allows for the generalization and unification
of the procedures used throughout the literature.
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