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We study the problem of finding a subspace representative
of multiple datasets by minimizing the maximal dissimilar-
ity between this subspace and all the subspaces generated
by those datasets (Renard et al., 2018). Extracting common
information from multiple datasets is crucial, a typical ex-
ample can be found in bioinformatics when dealing with
various datasets measuring the same disease on different
sets of patients, but corresponding to different studies and
different experimental conditions that should be taken into
account in further analysis.

1. Problem formulation
Beside the basic possibility to simply concatenate all the
datasets X1,...,Xm into a larger dataset X = [X1 . . . Xm]
and apply methods such as PCA on X , more specific ap-
proaches exist to extract common components present in
the datasets (Ponnapalli et al., 2011; Hotelling, 1936; Wold,
1985; Meng et al., 2014; Tenenhaus & Tenenhaus, 2011). A
central question when using more than two datasets is the
importance to give to the different datasets. A common ap-
proach is to give all datasets the same importance. To avoid
obtaining components representing very well a set of simi-
lar datasets but not being representative at all of others, we
minimize the maximal dissimilarity d between the common
component U ∈ Rp×K and all datasets Xi ∈ Rp×ni :

U∗ = arg min
U∈Rp×K

max
i
d(U,Xi).

This can be viewed as looking for the center of a minimum
enclosing ball. As U represents a subspace we want to use a
dissimilarity d that is invariant under basis selection. Let U
and Xi represent the subspaces generated by the columns of
U and Xi. Let Ū and X̄i be orthonormal basis of U and Xi,
and σk = cosφk(U,Xi) be the kth singular value of Ū>X̄i.
To preserve d(U,Xi) = 0 when U ⊂ Xi, we consider the
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following dissimilarity:

d(Xi, U) =

√√√√min(ni, nu)−
min(ni,nu)∑

k

cos2(φk)

with nu and ni dimensions of subspaces U and Xi.

2. Proposed approach
In (Badoiu & Clarkson, 2003), a procedure is proposed to
compute the minimum enclosing ball center of data points
in a Euclidean space. The procedure is extended to ar-
bitrary Riemannian manifolds in (Arnaudon & Nielsen,
2013). A candidate solution U (t) is initialized with
a data point, and is iteratively updated as U (t+1) =

Geodesic
(
U (t), X

(t)
f , 1

t+1

)
where X(t)

f is the farthest data

point to U (t). Geodesic(p, q, t) represents the intermedi-
ate point m on the geodesic passing through p and q such
that dist(p,m) = dist(p, q). This approach can be used to
solve our problem, but requires some adaptations. Since
we are interested in finding the best subspace of dimen-
sion K in Rp, our solution U belongs to the Grassmann
manifold G(K, p). Moreover, we are dealing with points
representing subspaces of different dimensions ni and there-
fore belonging to different manifolds G(ni, p): the usual
Grassmaniann distance cannot be used to determine X(t)

f .
To preserve d(U,Xi) = 0 when U ⊂ Xi, we use a dis-
similarity which becomes a metric if the two subspaces
belong to the same Grassmannian. Another adaptation is
that X(t)

f must be projected on G(K, p) to allow the use of
a geodesic. Given Xf ∈ G(nf , p) and U ∈ G(K, p) with
nf ≥ K, we compute Yf ∈ G(K, p) included in Xf that
minimizes the distance to U . We can then update U using
the corresponding geodesic.

Tested on generated synthetic data, the proposed method
is promising. We also compared it to a K-truncated SVD
on X and on X̄ = [X̄1...X̄n]. As expected, the SVD on X̄
tends to recover the mean while the Grassmaniann approach
tends to recover the center. On the criterion minimized, the
Grassmaniann approach gives the best results (see (Renard
et al., 2018) for more details).
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