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We propose a variant of the incremental gradient algorithm,
endowed with a deterministic shuffling strategy, to average
a set of data points lying on a Riemannian manifold. The
shuffling strategy is shown numerically to improve the con-
vergence rate (with respect to other orderings, including
random permutations) for two manifolds of interest, namely,
the sphere and the manifold of symmetric positive definite
(SPD) matrices.

Averaging a set of data points is a crucial task in many prob-
lems, including data denoising, classification and clustering
(e.g., with the k-means algorithm). In several applications,
the data belong to a curved space (more specifically, a Rie-
mannian manifold), which motivates the development of
efficient averaging tools on these spaces. Examples include
DTI (diffusion tensor imaging) images denoising (Pennec
et al., 2006) and electroencephalogram decoding (Massart
& Chevallier, 2017), for which the data are SPD matrices.
Another example is clustering for image and video-based
recognition. In that case, the data belong to the Grassmann
and Stiefel manifolds (Turaga et al., 2011).

A common definition of a mean on a Riemannian mani-
foldM is the Riemannian barycenter of the data (Karcher,
1977):

M = argmin
X∈M

1

2

N∑
i=1

fi(X), (1)

where fi := δ2(X,Ai) is the squared Riemannian distance
to Ai, and A1 . . . , AN are the data points. A classical way
to optimize a cost function of the form (1) consists in de-
creasing each term successively; this approach is known
as incremental gradient descent (IGD). The terms can be
either visited in a deterministic order or in a stochastic order.
We endow the IGD algorithm with a deterministic shuffling
algorithm, to improve the convergence rate, and illustrate
the results on the sphere and the set of SPD matrices.
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1. Incremental gradient descent update
Given a sequence of indices p0, p1, p2, . . . , with pi ∈
{1, . . . , N} for all i, and an initial iterate X0, chosen here
to be equal to A1, the incremental gradient descent update
for problem (1) reads:

Xk+1 = ExpXk

(
−tk grad fpk

(Xk)
)
= Xk#tkApk

, (2)

where the notation A#tB stands for the endpoint geodesic
between A and B, evaluated at parameter t. In the Eu-
clidean case, if the N − 1 first iterations consist in drawing
geodesics (straight lines) towards the points A2, . . . , AN

(i.e., p0, . . . , pN−2 is a permutation of {2, 3, . . . , N}), with
a steplength chosen as tk = 1/(k + 2), the barycenter (i.e.,
arithmetic mean) is equal to iterate XN−1, and the IGD
algorithm converges after N −1 steps. To our knowledge, it
is not clear if there exists orderings and steplengths leading
to a finite convergence on a general Riemannian manifold.

2. Shuffling algorithm
In (Massart et al., 2017), we propose a shuffling strategy
to improve the convergence rate of IGD on the set of SPD
matrices, based on the following observation. Numerical
results on this manifold indicate that starting the algorithm
with the order p0 = 2, p1 = 3, . . . pN−2 = N tends to
overemphasize the last data points considered (i.e., AN ,
AN−1, . . . ) in the resulting iterate XN−1. More specifi-
cally, the distance separating the iterate XN−1 and the last
data points is on average smaller than the one separating
the barycenter from those points. We have recently ob-
served the opposite behavior (i.e., the last data points are
underemphasized) on the sphere, which suggests that this
property may be related to the curvature of the manifold.
Indeed, the manifold of SPD matrices, with its classical
affine-invariant metric, has non-positive curvature, while
the sphere has curvature equal to one. Numerical results
indicate that the proposed deterministic shuffling provides
on average, both on the sphere and the set of SPD matrices,
a faster convergence than other orderings, including random
permutations.
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