Data fitting on manifolds with blended cubic splines
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We address the problem of curve fitting on a Riemannian
manifold M: given n + 1 data points do,...,d, € M,
associated with real (time-)parameters to, . . ., t,, we seek a
curve v : [0,n] — M being, on the one hand, “sufficiently
close” to the data points, while, on the other hand, being
“sufficiently straight”. A strategy to do so is to encapsulate
the two above mentioned goals in an optimization problem
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where I' is an admissible set of curves v on M, % is
the (Levi-Civita) second covariant derivative, [ - || is
the Riemannian metric at y(¢), and d(-, -) is the Rieman-
nian distance. The problem also has a parameter A that

strikes the balance between the two goals of the problem,
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We present here a method that extends the work of (Arnould
et al., 2015). In a nutshell, we reduce the search space of (1)
to the space of C'' composite curves

B:[0,n] - M: fi(t—1i), i = [t],

12 1y dt and the fitting term

made of so-called blended functions f;. These blended
functions are given by

fi(t) = av|[(Li(t), Ri(t)), (1 — w(t), w(t))],

where av[(x,y), (1 — a,a)] is a weighted mean, w(t) =
3t2 — 2t3, and where R;(t) and L;(t) are cubic Bézier
curves (Farin, 2002) computed respectively on Ty, M and
Tq,., M, i =0,...,n — 1, with the control points opti-
mized with a technique similar to (Arnould et al., 2015).
The blending method is represented in Figure 1.

The method guarantees the five following properties: (i)
the curve is C'* on [t,t,]; (ii) the curve interpolates the
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data points dy, . . ., d,, when A — oo; (iii) the curve is the
natural cubic spline minimizing (1) over a Sobolev space
H?(ty,t,) when M is a Euclidean space; (iv) the method
is designed for ease to use: it only requires the knowledge
of the Riemannian exponential and the Riemannian loga-
rithm on M; (v) the curve can be stored with only O(n)
tangent vectors; and, finally, (vi) given this representation,
computing y(¢) at t € [to, t,,] only requires O(1) exp and
log evaluations.

Further details will be available in (Gousenbourger et al.,
2018).

Figure 1. The composite curve B(¢) is made of cubic Euclidean
Bézier curves computed on different tangent spaces, and then
blended together with carefully chosen weights.
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