Data fitting on manifolds with blended cubic splines

Pierre-Yves Gousenbourger ¹ Estelle Massart ¹ P.-A. Absil ¹²

We address the problem of curve fitting on a Riemannian manifold \mathcal{M} : given n+1 data points $d_0,\ldots,d_n\in\mathcal{M}$, associated with real (time-)parameters t_0,\ldots,t_n , we seek a curve $\gamma:[0,n]\to\mathcal{M}$ being, on the one hand, "sufficiently close" to the data points, while, on the other hand, being "sufficiently straight". A strategy to do so is to encapsulate the two above mentioned goals in an optimization problem

$$\min_{\gamma \in \Gamma} E_{\lambda}(\gamma) \coloneqq \int_{t_0}^{t_n} \left\| \frac{\mathrm{D}^2 \gamma(t)}{\mathrm{d} t^2} \right\|_{\gamma(t)}^2 \mathrm{d} t + \lambda \sum_{i=0}^n \mathrm{d}^2(\gamma(t_i), d_i),$$

where Γ is an admissible set of curves γ on $\mathcal{M}, \frac{\mathbb{D}^2}{\mathrm{d}t^2}$ is the (Levi-Civita) second covariant derivative, $\|\cdot\|_{\gamma(t)}$ is the Riemannian metric at $\gamma(t)$, and $\mathrm{d}(\cdot,\cdot)$ is the Riemannian distance. The problem also has a parameter λ that strikes the balance between the two goals of the problem, i.e., the regularizer $\int_{t_0}^{t_n} \|\frac{\mathbb{D}^2\gamma(t)}{\mathrm{d}t^2}\|_{\gamma(t)}^2 \mathrm{d}t$ and the fitting term $\sum_{i=0}^n \mathrm{d}^2(\gamma(t_i),d_i)$.

We present here a method that extends the work of (Arnould et al., 2015). In a nutshell, we reduce the search space of (1) to the space of C^1 composite curves

$$\mathbf{B}: [0, n] \to \mathcal{M}: f_i(t-i), i = |t|,$$

made of so-called blended functions f_i . These blended functions are given by

$$f_i(t) = \text{av}[(L_i(t), R_i(t)), (1 - w(t), w(t))],$$

where $\operatorname{av}[(x,y),(1-a,a)]$ is a weighted mean, $w(t)=3t^2-2t^3$, and where $R_i(t)$ and $L_i(t)$ are cubic Bézier curves (Farin, 2002) computed respectively on $T_{d_i}\mathcal{M}$ and $T_{d_{i+1}}\mathcal{M},\ i=0,\ldots,n-1$, with the control points optimized with a technique similar to (Arnould et al., 2015). The blending method is represented in Figure 1.

The method guarantees the five following properties: (i) the curve is C^1 on $[t_0, t_n]$; (ii) the curve interpolates the

data points d_0,\ldots,d_n when $\lambda\to\infty$; (iii) the curve is the natural cubic spline minimizing (1) over a Sobolev space $H^2(t_0,t_n)$ when $\mathcal M$ is a Euclidean space; (iv) the method is designed for ease to use: it only requires the knowledge of the Riemannian exponential and the Riemannian logarithm on $\mathcal M$; (v) the curve can be stored with only $\mathcal O(n)$ tangent vectors; and, finally, (vi) given this representation, computing $\gamma(t)$ at $t\in[t_0,t_n]$ only requires $\mathcal O(1)$ exp and log evaluations.

Further details will be available in (Gousenbourger et al., 2018).

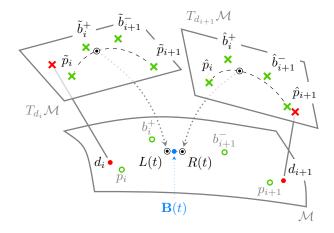


Figure 1. The composite curve $\mathbf{B}(t)$ is made of cubic Euclidean Bézier curves computed on different tangent spaces, and then blended together with carefully chosen weights.

References

Arnould, A., Gousenbourger, P.-Y., Samir, C., Absil, P.-A., and Canis, M. Fitting Smooth Paths on Riemannian Manifolds: Endometrial Surface Reconstruction and Preoperative MRI-Based Navigation. In F. Nielsen and F. Barbaresco (eds.), *GSI2015*, volume 9389, pp. 491–498. doi: 10.1007/978-3-319-25040-3_53.

Farin, G. E. *Curves and Surfaces for CAGD*. Academic Press, fifth edition, 2002. ISBN 1-55860-737-4.

Gousenbourger, P.-Y., Massart, E., and Absil, P.-A. Data fitting on manifolds with composite Bézier-like curves and blended cubic splines. 2018. submitted.

¹Université catholique de Louvain, ICTEAM – 1348 Louvainla-Neuve, Belgium ²This work was supported by EOS Project no 30468160 and by "Communauté française de Belgique - Actions de Recherche Concertées". Correspondence to: Pierre-Yves Gousenbourger
pierre-yves.gousenbourger@uclouvain.be>.