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We address the problem of curve fitting on a Riemannian
manifold M: given n + 1 data points d0, . . . , dn ∈ M,
associated with real (time-)parameters t0, . . . , tn, we seek a
curve γ : [0, n]→M being, on the one hand, “sufficiently
close” to the data points, while, on the other hand, being
“sufficiently straight”. A strategy to do so is to encapsulate
the two above mentioned goals in an optimization problem

min
γ∈Γ

Eλ(γ) :=

∫ tn

t0

∥∥∥∥D2γ(t)

dt2

∥∥∥∥2

γ(t)

dt+λ

n∑
i=0

d2(γ(ti), di),

(1)
where Γ is an admissible set of curves γ on M, D2

dt2 is
the (Levi-Civita) second covariant derivative, ‖ · ‖γ(t) is
the Riemannian metric at γ(t), and d(·, ·) is the Rieman-
nian distance. The problem also has a parameter λ that
strikes the balance between the two goals of the problem,
i.e., the regularizer

∫ tn
t0
‖D2γ(t)

dt2 ‖
2
γ(t)dt and the fitting term∑n

i=0 d2(γ(ti), di).

We present here a method that extends the work of (Arnould
et al., 2015). In a nutshell, we reduce the search space of (1)
to the space of C1 composite curves

B : [0, n]→M : fi(t− i), i = btc,

made of so-called blended functions fi. These blended
functions are given by

fi(t) = av[(Li(t), Ri(t)), (1− w(t), w(t))],

where av[(x, y), (1 − a, a)] is a weighted mean, w(t) =
3t2 − 2t3, and where Ri(t) and Li(t) are cubic Bézier
curves (Farin, 2002) computed respectively on TdiM and
Tdi+1M, i = 0, . . . , n − 1, with the control points opti-
mized with a technique similar to (Arnould et al., 2015).
The blending method is represented in Figure 1.

The method guarantees the five following properties: (i)
the curve is C1 on [t0, tn]; (ii) the curve interpolates the
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data points d0, . . . , dn when λ → ∞; (iii) the curve is the
natural cubic spline minimizing (1) over a Sobolev space
H2(t0, tn) whenM is a Euclidean space; (iv) the method
is designed for ease to use: it only requires the knowledge
of the Riemannian exponential and the Riemannian loga-
rithm on M; (v) the curve can be stored with only O(n)
tangent vectors; and, finally, (vi) given this representation,
computing γ(t) at t ∈ [t0, tn] only requires O(1) exp and
log evaluations.

Further details will be available in (Gousenbourger et al.,
2018).
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Figure 1. The composite curve B(t) is made of cubic Euclidean
Bézier curves computed on different tangent spaces, and then
blended together with carefully chosen weights.
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