
MGGD Parameter Estimation on the Space of SPD Matrices

Zois Boukouvalas 1 Jialun Zhou 2 Mark Fuge 1 Salem Said 2

1. Problem Statement
Due to its simple parametric form, the family of multivari-
ate generalized Gaussian distributions (MGGD) has been
widely used for modeling vector-valued signals. Therefore,
efficient estimation of its parameters is of significant inter-
est for a number of machine learning tasks. The MGGD
probability density functions are given by (Kotz, 1975)
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, m > 0 is a scale param-

eter, β > 0 is a shape parameter that controls the distribu-
tion’s peakedness and spread, and Σ ∈ Rp×p is a symmetric
positive definite (spd) matrix, called the scatter matrix.

For a random sample {x1,x2, ...,xN} of p−dimensional
observation vectors, the computation of the maximum like-
lihood (ML) estimates β̂, Σ̂, and m̂ lies in solving the non-
linear equation given by
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where ui = x>i Σ−1xi. The method of moments (MoM)
and ML estimation techniques have been proposed (Ver-
doolaege & Scheunders, 2011; 2012; Bombrun et al., 2012;
Sra & Hosseini, 2013; Pascal et al., 2013) for estimating the
scatter matrix. However, their accuracy suffers when β be-
comes large, making them unsuitable for many applications.

Here, we present an effective algorithm on the space of spd
matrices Sp+—Riemannian-averaged fixed point algorithm
(RA-FP)—that accurately estimates Σ for any β.

2. RA-FP Algorithm
Boukouvalas et al. (2015) formulated (1) as a fixed point
equation by defining the right hand side as a function on Sp+
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and used a FP algorithm Σk+1 = f(Σk) for k = 0, 1, 2, . . .

to estimate Σ̂. The algorithm’s convergence requires f be
contractive, which numerical experiments showed is not the
case when β ≥ 2. By taking advantage of the Riemannian
geometry of Sp+, RA-FP overcomes this difficulty.

Precisely speaking, given Σk, the new estimate Σk+1 is:

Σk+1 = Σk#tkf(Σk), (2)

where the right hand side of (2) denotes the Riemannian
average with ratio tk between Σk and Σk+1. Thus, RA-
FP implements Riemannian averages of successive fixed
point iterates, preventing them from diverging when β in-
creases. For a full discussion of RA-FP, as well as it proof
of convergence, we refer the reader to Boukouvalas et al.
(2015).

3. Numerical Experiments
To numerically verify RA-FP’s effectiveness, Fig. 1 shows
the Frobenius norm of the difference between the estimated
and original scatter matrices, when Σ and β are jointly
estimated.
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Figure 1. Scatter matrix estimation performance for different val-
ues of the shape parameter when Σ and β have been jointly esti-
mated. N = 10000.

4. Future Directions
Future work will focus on high-dimensional cases, specifi-
cally how to estimate MGGD parameters when dimension
p increases. Providing globally convergent algorithms that
also scale is non-trivial. However, one promising approach
is averaged constant-step-size Riemannian stochastic gradi-
ent descent—an MCMC method with a geometric mixing
property that converges exponentially to the stationary dis-
tribution. The online averaging (as in RA-FP) stabilises the
Markov chain to a unique deterministic limit, which experi-
mentally approximates the true parameter values well.
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