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Introduction. We propose a scalable solution for the Maha-
lanobis metric learning problem (Kulis, 2012). The Maha-
lanobis distance is defined as dA(x,x′) = (x−x′)>A(x−
x′), where x,x′ ∈ Rd are input vectors and A is a d × d
symmetric positive definite (SPD) matrix. The objective
is to learn a suitable SPD matrix A from the given data.
Since A is a d× d SPD matrix, most state-of-the-art metric
learning algorithms scale poorly with the number of features
d (Harandi et al., 2017). To mitigate this, a pre-processing
step of dimensionality reduction (e.g., by PCA) is generally
applied before using popular algorithms like LMNN and
ITML (Weinberger & Saul, 2009; Davis et al., 2007).

Recently, (Zadeh et al., 2016) proposed the geometric
mean metric learning (GMML) formulation, which enjoys
a closed-form solution. However, it requires matrix A to
be positive definite, which makes it unscalable in a high
dimensional setting. To alleviate this concern, we propose a
low-rank decomposition of A in the GMML setting. Low-
rank constraint also has a natural interpretation in the metric
learning setting, since the group of similar points in the
given dataset reside in a low-dimensional subspace. We
jointly learn the low-dimensional subspace along with the
metric. We show that the optimization is on the Grassmann
manifold and propose a computationally efficient algorithm.
On real-world datasets, we achieve competitive results com-
parable with the GMML algorithm, even though we work
on a smaller dimensional space.

Problem formulation. We follow a weekly supervised ap-
proach in which we are provided two sets S and D contain-
ing pairs of input points belonging to same and different
classes respectively. Taking inspiration from GMML, we
formulate the objective function as:

min
A�0

Tr(AS) + Tr(A†D)

subject to rank(A) = r,
(1)

where S :=
∑

(xi,xj)∈S (xi − xj)(xi − xj)
>, D :=∑

(xi,xj)∈D (xi − xj)(xi − xj)
>, and A† is the pseu-

doinverse of A.

Exploiting a particular fixed-rank factorization (Meyer et al.,
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2011), we factorize rank-r matrix A as A = UBU>,
where U is an orthonormal matrix of size d× r and B � 0
is of size r × r. Consequently, we rewrite (1) as:

min
U>U=I

min
B�0

Tr(UBU>S) + Tr(UB−1U>D). (2)

If we define S̃ = U>SU and D̃ = U>DU, then the inner
minimization problem has a closed-form solution as the
geometric mean of S̃−1 and D̃ (Zadeh et al., 2016). Using
this fact, the outer optimization problem is readily checked
to be only on the column space of U. The set of column
spaces is the abstract Grassmann manifold, which is defined
as the set of r-dimensional subspaces in Rd. Equivalently,
(2) is an optimization problem on the Grassmann manifold.

Extending the idea to a setting which weighs the sets S and
D unequally, we obtain the formulation

min
U>U=I

min
B�0

(1− t)δ2R(B, (U>SU)−1)

+ tδ2R(B,U
>DU),

(3)

where δR denotes the Riemannian distance on the SPD
manifold and t ∈ [0, 1] is a hyperparameter. Similarly to (2),
the problem (3) is also on the Grassmann manifold as the
inner problem has a closed-form solution as the weighted
geometric mean between S̃−1 and D̃.

Results. Our proposed algorithm LR-GMML is imple-
mented using the off-the-shelf conjugate gradients solver of
Manopt (Boumal et al., 2014). The codes are available
at https://github.com/muk343/LR-GMML. We
compare LR-GMML with GMML on publicly available
UCI datasets by measuring the classification error for a k-
NN classifier following the procedure in (Zadeh et al., 2016).
Parameter t is optimized for both the algorithms and average
errors over five random runs are reported in Figure 1.
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USPS,	d	=	256,	c	=	10,		 
n	=	9298,	r	=	30 

Isolet,	d	=	617,	c	=	26,	 
n	=	7797,	r	=	45 

Iris,	d	=	4,	c	=	3,	n	=	150, 
r	=	3 

Wine,	d	=	13,	c	=	3,	n	=	178, 
r	=	10 

Ionosphere,	d=	33,	c=	2,	
n	=	351,	r	=	9	
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Figure 1. Classification error rates of k-NN classifier comparing LR-GMML with

GMML. We obtain comparable performance in lower ranks.

https://github.com/muk343/LR-GMML
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